Prof. | Bang Woosuk, Ph.D. |
---|---|
Homepage | laserfusion.gist.ac.kr |
Intro. | Rapid heating of matter using a short-pulse laser is an emerging research area in laser-plasma physics. In particular, nuclear fusion experiments have been performed in small-scale laboratories with high power lasers. In Laser Fusion Laboratory at GIST, we have a technique to heat small deuterium fuel samples (~10 nm radius spheres) to temperatures exceeding 100 million degrees Celsius. This is a sufficiently high temperature for deuterium atoms to undergo nuclear fusion reactions in a laboratory. We aim to study fundamental physics necessary to achieve fusion ignition. In addition, we will investigate the properties of matter in extreme temperatures and pressures. Specifically, we plan to heat a small solid density target rapidly above 10,000 K using a high power laser, and examine its properties. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. We aim for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, which will benefit plasma physics, astrophysics, and nuclear physics. |